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Abstract
Validity of the Landauer–Buttiker formalism for studying linear transport in mesoscopic
systems is well established theoretically as well as experimentally. Akkermans et al
(1991 Phys. Rev. Lett. 66 76) have shown that the formalism can be extended to study
thermodynamic properties like persistent currents. This extension was verified for simple
one-dimensional systems. We study the applicability of Akkermans et al’s formula for
quasi-one-dimensional systems with several conducting channels. In the case that all modes are
propagating the formula is still valid but in the case of evanescent modes it requires
reinterpretation.

1. Introduction

Due to technological advances in nanofabrication, it is possible
to realize very small systems in which the quantum mechanical
coherence length of the electron extends throughout the
length of the sample. Quantum interference phenomena and
fluctuations are important in determining the thermodynamic
and transport properties of these systems [1]. They are
frequently referred to as mesoscopic systems.

Mesoscopic phenomena can occur in canonical systems
as well as in grand canonical systems. The systems are often
so small that even measuring probes (like voltage probes and
current probes) can change the system from canonical to grand
canonical [2]. While a canonical system is well described by
the Hamiltonian of an isolated system, that is not the case
for a grand canonical system. A grand canonical mesoscopic
system, by definition, is coupled to a reservoir with which it
can exchange electrons. The reservoir can drastically change
the quantum states of the system and this has to be explicitly
accounted for [3]. This can be done by solving the Schrödinger
equation of the whole system, including the leads. The system
is open and has to be solved as a scattering problem. This
method is known as the Landauer–Buttiker formalism.

If an Aharonov–Bohm flux is applied through the center
of a ring, the ring gets magnetized and a persistent current is
generated in the ring [4]. This current arises because of the

vector potential that changes the phase of the wavefunction
in the ring [5]. Persistent current is an example of
mesoscopic phenomena: the magnetization is determined
by quantum interference effects. Persistent currents have
been studied for more than a decade, theoretically as well
as experimentally [5]. In an isolated ring the persistent
current is carried by the eigenstates. However, if the ring
is connected to reservoirs, the persistent current is carried
by the resonant and non-resonant scattering states. Several
such grand canonical systems have been studied, like a
quantum ring connected to a single reservoir or to many
reservoirs [6]. If it is connected to many reservoirs with
different chemical potentials, then non-equilibrium currents
can coexist with equilibrium persistent currents. In such
open systems several interesting effects have been predicted,
like current magnification in the presence of transport [7–9],
directional dependence of persistent currents [10] and the
current magnification effect in equilibrium systems in the
absence of transport current [11].

In order to realize a mesoscopic grand canonical system
we connect the ring to reservoirs that are at fixed chemical
potentials as is schematically shown in figure 1. The left
reservoir has a chemical potential μ1 and the right one has a
chemical potential μ2. The reservoirs can also be at a finite
temperature T . The ring is threaded by an Aharonov–Bohm
flux. If μ1 > μ2, then there is a transport current (which is
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Figure 1. A ring connected to an infinite wire. A δ function potential
is present in the ring at position X. A chemical potential difference
(μ1 −μ2) between the left reservoir (LR) and the right reservoir (RR)
drives a transport current through regions I and II. The ring is pierced
by an Aharonov–Bohm flux φ that drives an equilibrium current
called the persistent current in the ring. α is the Aharonov–Bohm
phase an electron picks up in region IV and β is that in region V. In
all expressions for physically observable quantities we only
encounter the sum α + β = 2πφ

φ0
, where φ0 is the flux constant.

a non-equilibrium current) through regions I and II. There is,
however, no transport current in the ring. The ring will carry
a persistent current which is an equilibrium current. Thus, in
the present geometry, the equilibrium persistent currents and
non-equilibrium transport currents are spatially separated.

The Landauer–Buttiker approach proposes that an
equilibrium phenomenon, like persistent current in such an
open system as that in figure 1, can be obtained from solving
the scattering problem [3]. Akkermans et al [12] related the
persistent current I S to the S-matrix by the following formula:

I S = 1

2π i

∂ log[det(S)]
∂φ

. (1)

Such a simple mathematical relation between the persistent
current inside the ring and the S-matrix obtained from the
wavefunction far away from the ring is rather novel and
resulted in a flurry of theoretical activity [13]. While
it is established (from theoretical and experimental points
of view) that conductance (a non-equilibrium phenomenon)
can be obtained from the S-matrix, Akkermans’ approach
may prove to be the first step to obtain any equilibrium
phenomenon from the S-matrix. Hence Akkermans et al’s
formula is a step towards a mesoscopic version of fluctuation–
dissipation theorem [13]. The work by Dashen et al [14]
is the most seminal work in this area that elaborates the
connection between statistical mechanics and S-matrix theory.
For nonlinear response and AC response an important role
is played by the partial density of states [15] rather than the
density of states and this too has been formulated in terms of
the S-matrix [16]. The correctness of equation (1) has been
explicitly verified in one dimension (1D) but not in quasi-
one dimension (Q1D). Complexities due to the presence of
evanescent modes in Q1D has been observed recently [17, 18]
but they are not yet well known [19]. For example, the Friedel
sum rule [17] and the Buttiker–Thomas–Pertre formula [18]
break down in the presence of evanescent modes.

In this work we undertake the task of verifying the validity
of the Akkermans formula, equation (1), in the case of Q1D
systems. We show analytically how the evanescent modes
complicate things. Earlier works [17, 18] on different formulae
are essentially numerical verifications. Persistent current in the
geometry of figure 1 has been studied earlier, but always using
the wavefunction formalism. The S-matrix was never used and
comparison was not made between Akkermans et al’s approach
and the usual wavefunction approach. In this paper we
show explicitly that the 1D result cannot be straightforwardly
extended to Q1D in the presence of evanescent modes.

2. Model and method

As shown in figure 1, we consider a ring coupled to a wire. The
scattering solution for this geometry is discussed in detail in
our earlier work [6]. Here we outline some points with respect
to calculating the RHS of equation (1) which was not done
earlier. There is a δ-potential impurity present in the ring at an
arbitrary position X (figure 1). We apply an Aharonov–Bohm
flux φ through the ring, perpendicular to the plane of the paper.
We consider two modes of propagation because it will show the
shortcomings of Akkermans et al’s formula. The Schrödinger
equation for a Q1D wire in the presence of a δ potential at
x = 0, y = yi (the third degree of freedom, i.e. the z direction,
is usually frozen by creating a strong quantization [1]) is
[
− h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ Vc(y)

+ γ δ(x, y − yi)

]
	(x, y) = E	(x, y). (2)

Here the x coordinate is along the wire and the y coordinate is
perpendicular to the wire, m∗ is the electron mass and E is the
electron energy. Vc(y) is the confining potential perpendicular
to the wire. The wavefunction in the ring can be obtained by
solving the above equation with periodic boundary conditions
where we assume the ring to be so large that its curvature can
be neglected. The magnetic field appears just as a phase of
	(x, y) and will be accounted for while applying the boundary
conditions. Away from the δ potential (i.e. x �= 0 and y �= yi ),
equation (2) can be separated as

− h̄2

2m∗
d2ψ(x)

dx2
= h̄2k2

2m∗ ψ(x) (3)

and [
− h̄2

2m∗
d2

dy2
+ Vc(y)

]
χn(y) = Enχn(y). (4)

Here we consider that the electron is propagating along the x
direction. This means in regions I and II of figure 1 the x
direction is along the arrows. In region III, the x direction
is along the line joining P and Q. And in regions IV and V,
the x direction is along the perimeter of the ring. One can
choose different axes in the different regions as the matrix
equations obtained from mode matching are independent of
this choice [6]. The confinement potential Vc(y) in different
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regions is in the y (transverse) direction. It can be seen from
equations (3) and (4) that

E = En + h̄2k2
n

2m∗ . (5)

For simplicity we take Vc(y) to be a square well potential
of width W , which gives χn(y) = sin[ nπ

W (y + W
2 )]. So

En = h̄2n2π2

2m∗W 2 . Hence, in the first mode

k1 =
√

2m∗E

h̄2
− π2

W 2
(6)

is the propagating wavevector and in the second mode

k2 =
√

2m∗E

h̄2
− 4π2

W 2
(7)

is the propagating wavevector.
When electrons are incident along region I (in figure 1)

in the first mode the scattering problem can be solved exactly.
The solution to equation (3) in region I becomes

ψI = 1√
k1

eik1 x + r ′
11√
k1

e−ik1 x + r ′
12√
k2

e−ik2 x . (8)

Similarly, in regions II, III, IV and V we get

ψII = g′
11√
k1

eik1 x + g′
12√
k2

eik2 x (9)

ψIII = Aeik1 x

√
k1

+ Be−ik1 x

√
k1

+ Ceik2 x

√
k2

+ De−ik2 x

√
k2

(10)

ψIV = Eeik1 x

√
k1

+ Fe−ik1 x

√
k1

+ Geik2 x

√
k2

+ H e−ik2x

√
k2

(11)

ψV = Jeik1(x−l2 )

√
k1

+ K e−ik1(x−l2 )

√
k1

+ Leik2(x−l2 )

√
k2

+ Me−ik2 (x−l2 )

√
k2

, (12)

where r ′
11, r ′

12, g′
11, g′

12, A, B , C , D, E , F , G, H , J , K , L and
M are to be determined by mode matching.

Note that at P and Q we have a three-legged junction that
is schematically shown in figure 2. In a previous work [6]
we proposed a junction scattering matrix SJ for a two-channel
junction that can be easily generalized to any number of
channels. For the δ potential impurity at X we use the
scattering matrix Sb that was derived by Bagwell [20]. One can
match the wavefunctions and conserve the currents by using
these S-matrices that give us a set of linear equations. We
calculate the coefficients A, B , C , D, E , F , G, H , J , K , L
and M numerically by matrix inversion.

Persistent current can be computed from the wavefunction

I W (k1) =
∫ W

2

− W
2

h̄

2im∗ (ψ
† �∇ψ − ψ �∇ψ†) dy. (13)

Here the index k1 implies that this is the current due to an
incident electron in the k1 channel from the left. Similarly
currents are generated due to incident electrons in the k1

Figure 2. A three-legged junction.

channel from the right, the k2 channel from the left and the k2

channel from the right. So the net observable persistent current
is

I W = 2I W (k1) + 2I W (k2). (14)

From equation (13) we get

I W (k1 ) = 2I0(|E |2 − |F |2 + |G|2 − |H |2)(k1), (15)

where I0 = h̄e
2m∗W 2 .

We also calculate the scattering matrix elements r ′
11,

r ′
12, g′

11, g′
12, r ′

22, r ′
21, g′

22 and g′
21 by matrix inversion to find

the scattering matrix S of the system:

S =

⎛
⎜⎜⎝

r ′
11 r ′

12 g′
11 g′

12
r ′

21 r ′
22 g′

21 g′
22

g′
11 g′

12 r ′
11 r ′

12
g′

21 g′
22 r ′

21 r ′
22

⎞
⎟⎟⎠ . (16)

By substituting (16) into (1), equation (1) can also be
written as a sum of four terms [15], where each term consists
of scattering matrix elements due to incidence in a particular
momentum channel. That is

I S = 2I S(k1) + 2I S(k2) (17)

where

I S(k1) = 1

2π

(
|r ′

11|2
∂arg(r ′

11)

∂φ
+ |r ′

12|2
∂arg(r ′

12)

∂φ

+ |g′
11|2

∂arg(g′
11)

∂φ
+ |g′

12|2
∂arg(g′

12)

∂φ

)
(18)

and

I S(k2) = 1

2π

(
|r ′

21|2
∂arg(r ′

21)

∂φ
+ |r ′

22|2
∂arg(r ′

22)

∂φ

+ |g′
21|2

∂arg(g′
21)

∂φ
+ |g′

22|2
∂arg(g′

22)

∂φ

)
. (19)

Although not implied by the notation, the currents defined
above (equations (14) and (17)) are differential currents in an
infinitesimal energy range dE . The integration of these will
give the actual measurable currents. The integration limits
depend on the chemical potential μ1 and μ2. Temperature can
be included through the Fermi function. All expressions so far
are derived for both modes being propagating. Earlier it was
shown that I W = I S for a one-dimensional ring coupled to a
reservoir [12]. We shall show below that, when all modes are
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Figure 3. I W/I0 and I S/I0 versus 8π2m∗ E W 2/h2. The two curves
are identical. The system parameters are l1 = l2 = l3 = 1, yi = 0.1,
α = β = 0.3 and γ = 4.

propagating, then one gets I S = I W , but not when we include
evanescent modes. This is because when evanescent modes are
present then some expressions can be analytically continued to
include evanescent modes but not all expressions.

3. Inclusion of evanescent modes

E is the energy of incidence that can be varied as an
external parameter by tuning the chemical potentials of the
reservoirs. When π2 � 2m∗ EW 2/h̄2 < 4π2, then it can
be seen from equations (7) and (8)–(12) that the k2 mode
becomes evanescent. Equations (8)–(12) are still solutions to
Schrödinger’s equation (3), implying electrons in the ring can
be coupled to an evanescent channel due to scattering [20]. A
single impurity can couple an electron to the evanescent second
channel. Scattering at the junctions can also couple an electron
to the evanescent second channel. No electron can be incident
from (or emitted to) ∞ along the evanescent second channel.
So the scattering problem has to be solved with an incident
electron in the k1 mode in the left lead and an outgoing electron
in the k1 mode in the right lead. Hence the S matrix becomes
2 × 2 and is given by

S =
(

r ′
11 g′

11
g′

11 r ′
11

)
. (20)

Note that the matrix elements, like all other physically
observables like current, can be analytically continued. That
is r ′

11 in equation (16) under k2 → iκ2 is the same as r ′
11

in equation (20). In fact, they are the same expression as a
function of E but valid in different regimes (E > 4π2

W 2 and

E < 4π2

W 2 ). But the S-matrix in equation (20) cannot be
considered as an analytical continuation of that in equation (16)
because their dimensions are different. So equation (1) cannot
be analytically continued. Although the S matrix is 2 × 2,
its calculation has to be done by using the 6 × 6 junction S-
matrix SJ that is defined in [6] and the 4 × 4 S-matrix Sb

for the δ function potential that is defined in [20]. This is
essential because evanescent modes can be obtained inside the
ring without violating any physical principles like conservation
of energy. g′

12, r ′
12, etc, are non-zero, but they do not carry any

current. They are not S-matrix elements any more. Rather,
they define the coupling to evanescent modes. Unitarity should
imply |r ′

11|2 + |g′
11|2 = 1 and indeed we get this from

Figure 4. I S(k1)/I0 and I W (k1 )/I0 versus 8π2m∗ E W 2/h2. The two
curves are identical. The system parameters are l1 = l2 = l3 = 1,
yi = 0.1, α = β = 0.3 and γ = 4.

the junction matrix defined by SJ. This implies that SJ is
appropriate for accounting for realistic multichannel situations.

4. Results and discussions

In a real system, there are always propagating modes as
well as evanescent modes. As is evident from equations (6)
and (7), evanescent modes have higher transverse energy than
the propagating modes. Also the higher the n value of the
evanescent mode, the higher is its transverse energy. This
energy is at the cost of the propagation energy which becomes
more and more negative for higher n evanescent modes. There
will be a natural cutoff as very high transverse energies cannot
be realized in a quantum wire. We will first consider a case
when there are two modes in the wire, both being propagating.
We will then consider a case when one mode is propagating
and the other is evanescent. In the first case we will verify that
Akkermans et al’s approach gives exactly the same result as
the current calculated from the wavefunction (i.e. I S = I W ).
In the second case there are complexities. It will be argued that
such complexities will persist in a real system where there will
be many evanescent modes.

Both modes are propagating. First we consider the energy
range 4π2 � 2m∗ EW 2/h̄2 � 9π2 (i.e. 39.478 �
2m∗EW 2/h̄2 � 88.826). Substituting this E in equations (6)
and (7) we can see that both the modes are propagating. The
nature of the current is plotted in figure 3. The figure shows
that the current I S obtained from Akkermans et al’s formula
(that is, from the S-matrix) is identical with I W (that is, from
the wavefunction). In fact, I S(k1) and I S(k2) are individually
identical with I W (k1) and I W (k2 ), respectively. These are
shown in figures 4 and 5. This implies that I W (k1 ) is the same
algebraic expression as I S(k1). Similarly for I W (k2) and I S(k2).
And also I S and I W are the same algebraic expressions. We
have checked this analytically in Mathematica.

One mode is evanescent. Now consider the energy range
π2 � 2m∗EW 2/h̄2 < 4π2 (i.e. 9.87 � 2m∗EW 2/h̄2 �
39.477) so that k2 =

√
2m∗ E

h̄2 − 4π2

W 2 becomes imaginary

(k2 → iκ2) while k1 =
√

2m∗ E
h̄2 − π2

W 2 remains real. In this

regime the ring contains one propagating and one evanescent
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Figure 5. I S(k2)/I0 and I W (k2 )/I0 versus 8π2m∗ E W 2/h2. The two
curves are identical. The system parameters are l1 = l2 = l3 = 1,
yi = 0.1, α = β = 0.3 and γ = 4.

Figure 6. I S/I0 (solid line) and I W/I0 (dashed line) versus
8π2m∗ E W 2/h2 of the system when the second channel is
evanescent. The system parameters are l1 = l2 = l3 = 1, yi = 0.1,
α = β = 0.3 and γ = 4. Here I S/I0 is obtained by substituting S
given in equation (20) into equation (1).

mode. Evanescent mode current can be calculated by directly
applying equation (13) to evanescent mode wavefunctions or it
can be calculated by analytically continuing the propagating
mode current (14) to below the barrier (that is, k2 → iκ2

in (14)). We have already argued that I S and I W are the same
algebraic expressions. Under the transformation k2 → iκ2,
applied to both I S and I W , they remain the same algebraic
expression. However, Akkermans et al’s formula takes a
different meaning in this regime where there are evanescent
modes. This is essential because Akkermans et al’s formula
in equation (1) is related to the S-matrix and the transformed
expression (I Sk2→iκ2 ) cannot be obtained from the S-matrix.
We know that no electron can be incident along the evanescent
channel. So I W (k2 ) and I S(k2) are zero. So I W is now just
equal to I W (k1), where k2 has been analytically continued. If
one assumes that in this regime I S is equal to I S(k1), where k2

is analytically continued, then obviously once again I S = I W ,
as they are the same algebraic expression. However, one
can see that I S(k1) (see equation (18)) cannot be obtained
by substituting the S-matrix (equation (20)), into Akkermans
et al’s formula (equation (1)). If we do this substitution, then
we will get the first term and the third term in equation (18)
(where of course the k2 → iκ2 transformation is taken care of).
We will not get the second and fourth terms as r ′

12 and g′
12 are

not S-matrix elements any more. We can see from figure 6 that
the difference between I S and I W is quite large.

Since I S obtained from equation (1) is now reduced to just
two terms, one may ask if it gives the partial current only in the

Figure 7. I S/I0 (solid line) and I W (k1 )
1 /I0 (dashed line) versus

8π2m∗ E W 2/h2. The system parameters are l1 = l2 = l3 = 1,
yi = 0.1, α = β = 0.3 and γ = −3.7. Here I S/I0 is obtained by
substituting S given in equation (20) into equation (1).

propagating channel, because this partial current also consists
of two terms only. Note from equation (15) that the total
current I W (k1 ) = I W (k1)

1 +I W (k1)
2 , where I W (k1)

1 = 2I0(|E |2−
|F |2)(k1), E and F being the wavefunction amplitudes in the
propagating channel and I W (k1 )

2 = 2I0(|G|2 − |H |2)(k1), G
and H being the wavefunction amplitudes in the evanescent
channel. We have plotted I W (k1)

1 in figure 7. The figure shows
that I S differs from I W (k1 )

1 . So it is confirmed that I S obtained
from equation (1) neither gives the total measurable current
of the system nor the partial current through the propagating
channel.

5. Conclusions

For realistic mesoscopic rings connected to leads, there are
always evanescent modes. The S-matrix is always defined
by the propagating modes only. For such systems one cannot
directly apply Akkermans et al’s formula. Instead one should
start with a model where all the modes are made propagating.
One should apply Akkermans et al’s formula to the S-matrix
of this system and then analytically continue this expression
for the current to the situation where an appropriate number of
modes are evanescent. While the Landauer–Buttiker approach
is still inevitable as the evanescent modes are obtained due to
an incident electron that is scattered to evanescent modes, the
formula given in equation (1) is no longer strictly valid in the
presence of evanescent modes.
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